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Abstract—Unmanned aerial vehicle (UAV) has revealed its
great advantage to provide efficient data collection and wireless
charging services to wireless-power sensor networks (WPSNs).
Note that the UAV usually is equipped with limited battery power
and therefore may not have enough energy to visit all sensor
nodes (SNs) during a flight. However, the energy consumption
of the UAV is rarely discussed in UAV-assisted WPSNs. In this
paper, we study visiting planning problem in the UAV-assisted
WPSN by considering both the energy limitation of the UAV and
the age of information (AoI) of data collection. Specifically, we
introduce a mixed data collection strategy to reduce the AoI of
the collected data and improve the energy efficiency of the UAV
during each flight. The formulated AoI-aware problem, which
aims to minimize the average AoI of the collected data and
meanwhile maximize the number of visiting SNs as well as the
amount of data, is further tackled by utilizing the reformulation-
linearization-technique (RLT) and alternating direction method
of multipliers (ADMM). The results show the proposed ADMM-
based algorithm can outperform other approaches in terms of
system objective and energy efficiency.

Index Terms—data collection, age of information, energy-
limited UAV, visiting planning

I. INTRODUCTION

Sensor networks have been considered as a practical plat-
form for real-time monitoring in various application scenarios,
such as urban traffic, weather monitoring, and disaster warning
[1]. In a sensor network, sensor nodes (SNs) are often de-
ployed in some extreme conditions around the city for remote
monitoring and it is impractical to replace their batteries
frequently [2]. Fortunately, wireless charging, which is a
promising power transfer technology to charge rechargeable
SNs in different ranges, could be utilized to extend the service
life of the overall sensor networks. Currently, the unmanned
aerial vehicle (UAV) is becoming an indispensable part of
the wireless-powered sensor networks (WPSNs) to not only
facilitates data collection but also wirelessly charge those SNs
with low power [3], [4].

To have a comprehensive and fresh overview of a remote
monitoring application, it is necessary for a UAV to visit
more SNs and collect more sensing data during each flight.
A deep reinforcement learning (DRL)-based technique [5] is
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designed to find the optimal trajectory and data collection in
a specific coverage area. The results in [6] show that the data
transfer and energy transfer problem could be formulated as a
Markov decision process (MDP) model and further optimized
based on DRL schemes. A multi-objective deep deterministic
policy gradient (DDPG) algorithm [7] is proposed to jointly
maximize the sum data rate and total harvested energy and
meanwhile minimize the UAV’s energy consumption.

The age of information (AoI) has been proposed as a key
performance metric to measure the freshness of the collected
data [8], that is, the smaller AoI, the higher data freshness.
Recently there has been an increasing focus on the average
AoI minimization problem. The UAV’s trajectory and the time
required at each SN are considered in [9] to minimize the
average AoI of the collected data. A deep Q-network (DQN)-
based scheme [10] is proposed to minimize the average AoI
by jointly optimizing the trajectory of the UAV, the scheduling
of information transmission, and energy harvesting of ground
nodes. A DQN-based approach was developed in [11], where
the UAV trajectory design problem is formulated as MDP, and
the realization goal is to minimize the accumulated AoI within
a given duration.

As we know that the UAV requires a large amount of energy
consumption for flying or hovering. The UAV also needs to
consume some energy for data collection as well as wireless
charging in the UAV-assisted WPSNs. However, the energy
consumption of the UAV is rarely studied in most of research
works [12], [13], which is impractical in the real world. That
is, the UAV equipped with limited battery power may not have
enough energy to visit all SNs during a flight, which causes
the failure of those existing visiting planning approaches.
Therefore, in the UAV-assisted WPSNs, how to minimize the
average AoI and meanwhile maximize the number of visiting
SNs by considering the energy consumption of the UAV has
become an interesting research topic.

In this paper, we present an AoI-aware wireless-power sen-
sor network and optimize the visiting planning of the energy-
limited UAV. In the proposed WPSN, we assume that a UAV
departs from the depot to execute data collection and wireless
charging tasks by interacting with multiple SNs around the
map. Due to the energy limitation and AoI minimization
target, the UAV will finally fly back to the depot for data
aggregation and battery recharging. Specifically, we introduce



Fig. 1. UAV-assisted wireless-powered sensor networks

a mixed data collection strategy combining hovering and flying
modes, which is useful to reduce the AoI of the collected
data and improve energy efficiency of the UAV during each
flight. We formulate the UAV visiting planning problem as
a mixed-integer nonlinear problem (MINLP) by comprehen-
sively considering the visiting path and the mixed data col-
lection strategy. Furthermore, we utilize the reformulation-
linearization-technique (RLT) and alternating direction method
of multipliers (ADMM) to tackle the difficulty of the joint
optimization problem, which aims to minimize the average
AoI of the collected data and meanwhile maximize the number
of visiting SNs as well as the amount of data. The results show
that the proposed ADMM-based visiting planning algorithm
takes advantage of the mixed data collection strategy and can
outperform other approaches [12], [13] in terms of system
objective and energy efficiency.

II. SYSTEM MODEL

A. System Architecture

The proposed UAV-assisted WPSN system is illustrated
in Fig.1. A depot S0 acts as a data center to perform
data aggregation and remote monitoring from those sensing
information acquisited by total N ground SNs denoted by
S = [S1, S2, · · · , Sn, · · · , SN ] and distributed in a large area.
The UAV flies from the depot to visit a subset of SNs for
data collection and meanwhile provide wireless charging to
extend their service life. Specifically, we define that the UAV
will first provide wireless charging and then collect the data
from the visiting SN. Note that the UAV is equipped with
limited battery capacity EU , we assume that the UAV can
visit maximum I SNs during each flight and it will finally
return to the depot for battery recharging. In this way, we
also regard the depot as a virtual SN SN+1. Furthermore, to
provide continuous services, we assume that multiple UAVs
could be deployed to fly and recharge alternately [14].

The visiting planning of a UAV is determined before
departing from the depot. The visiting path can be presented

Fig. 2. Hovering and flying data collection model

as V0 → V1 → · · · → Vi → · · · → VI → VI+1, where Vi
means the i-th hovering position of the UAV. Denoting the
2D locations of Sn as Φ(Sn), we know that both the starting
and end positions of the UAV are the location of the depot,
that is, V0 = Φ(S0) and VI+1 = Φ(SN+1). We further denote
the visiting path indicator as a = [an,i](N+1)×(I+1), where
an,i = 1 means Sn is the i-th SN visited by the UAV at
location Vi. In this way, the distance between Vi and Vi+1

can be calculated by

di =

N+1∑
n=1

N+1∑
n′=1

an,ian′,i+1 ‖Φ(Sn)− Φ(Sn′)‖2 . (1)

B. Data Collection Model

As shown in Fig. 2, we introduce a mixed data collection
strategy combining hovering and flying modes. In hovering
mode, a part of the data is collected when the UAV hovers
above the visiting SN at Vi while the remaining data is
collected in flying mode, namely the period when the UAV
flies directly from Vi to Vi+1. We assume that the UAV flies
at a fixed altitude H and keeps a constant flying velocity vfd

in flying mode. The thdi and tfdi denote the elapsed time of
data collection in hovering and flying modes, respectively.

We adopt the line-of-sight (LoS) transmission model for
data collection. The channel gain of the wireless communica-
tion link between the UAV and Sn under hovering mode and
flying mode are given as:∣∣ghn∣∣2 = β0 ·H−2, (2)∣∣gfn (t)

∣∣2 = β0 ·
√

(vfdt)
2

+H2
−2
, (3)

where β0 represents the channel power gain at 1 m. Con-
sequently, the data uploading rate under hovering and flying
modes are given as

Rhdn = B log2

(
1 +

Pupn
∣∣ghn∣∣2
σ2

)
, (4)

Rfdn,u (t) = B log2

(
1 +

Pupn
∣∣gfn(t)

∣∣2
σ2

)
, (5)

where B is the channel bandwidth, Pupn is the transmission
power of Sn, and σ2 is the noise power.



C. Flying Model

According to [15], we define the propulsion power con-
sumption model of UAV as

Pmov(V ) = P0(1 +
3V 2

U2
tip

) + P1(

√
1 +

V 4

4v20
− V 2

2v20
)

1
2

+
1

2
d0ρsAV

3, (6)

where V is the flying velocity of the UAV and the rest of
the parameters are constants related to a specific UAV. When
the UAV is hovering, i.e., V = 0, the hovering power will
be Phov = P0 + P1. Similarly, when the UAV is flying, i.e,
V = vfd, the flying power will be P fd = Pmov(vfd). As
shown in Fig. 2, we have the constraint vfdtfdi ≤ di. To
ensure high data freshness, we assume that the UAV will
fly the remaining distance from Vi to Vi+1 at the end of
data collection at maximum velocity vmax, and therefore the
corresponding flying power will be P vm = Pmov(vmax).

Note that the UAV flies from Vi to Vi+1 combining hovering
and flying modes for data collection, the elapsed time that the
UAV flies at maximum velocity could be calculated by

tfvmi =
di − vfdtfdi

vmax
. (7)

Furthermore, the total flying time from Vi to Vi+1 is given by

tflyi =

{
tfvm0 = d0/vmax, i = 0

tfdi + tfvmi , i 6= 0
. (8)

D. Energy Model

When an,1 = 1, note that the UAV will charge Sn once it
arrives at Vi, the energy requirement of Sn is defined by

Eneedn,i = P srn (T ′ − u′n) + Pupn

(
thdi + tfdi

)
. (9)

The first term represents the sensing power consumption of
Sn, where P srn denotes its data sensing power, u′n denotes
the time stamp when last charging was completed, and T ′

denotes the last time stamp when the UAV returned to the
depot. The second term represents its energy consumption of
data uploading during hovering and flying mode. So far, the
charging time at Vi can be presented by

tchgi =

N∑
n=1

an,iE
need
n,i

η′ |ghn|
2
P chg

, (10)

where η′ is energy loss rate and P chg is the maximum charging
power of UAV.

We can calculate the energy consumed by UAV for charging,
hovering, and flying by

Echgi = P chgtchgi , (11)

Ehovi = Phov(tchgi + thdi ), (12)

Eflyi =

{
P vmtfvm0 , i = 0

P fdi tfdi + P vmtfvmi , i 6= 0
(13)

· · ·

· · ·

· · ·

· · ·

Fig. 3. AoI model of data collection

Therefore, its total energy consumption during a flight will be

Es = Efly0 +

I∑
i=1

Echgi + Ehovi + Eflyi . (14)

We further define the energy efficiency rate of a flight as

η =

∑I
i=1

[
P chgtchgi + Phov(tchgi + thdi ) + P fdtfdi

]
Es

. (15)

E. AoI Model

To better quantify the freshness of data, we introduce τn
to represent the data generation time of size Dn at Sn with
sampling rate rsrn , that is,

τn =
Dn

rsrn
. (16)

The total amount of the collected data in a flight will be Ds =∑I
i

∑N
n=1 an,iDn. Besides, we define un as the time stamp

when the UAV starts to collect data from Sn and T as the time
stamp when the UAV returns to the depot. The time stamp T
is calculated by

T = T ′ + tfly0 +

I∑
i=1

ti, (17)

where ti = tchgi + thdi + tfdi + tfvmi .
We introduce AoI as the key performance metric to describe

the freshness of the collected data. Let Ai be AoI of the
collected data from the visiting SN at Vi:

Ai =

N∑
n=1

an,i (T − un + τn) . (18)

The AoI sum of all collected data in a flight will be As =∑I
i=1Ai. As illustrated in Fig. 3, the increment of As after

visiting the SN at Vi is formulated as

∆As
i = i ·

(
tchgi + thdi + tfdi + tfvmi

)
− tchgi +

N∑
n=1

an,iτn.

(19)

III. PROBLEM FORMULATION AND SOLUTION

In the proposed UAV-assisted WPSN, we aim to minimize
the average AoI of the collected data and meanwhile maximize
the number of visiting SNs as well as the amount of data. In



case some SNs may not be visited for too long, we provide a
penalty mechanism to guarantee the system fairness. After a
UAV flight, the penalty will be updated by

Ps =

N∑
n=1

(
1−

I∑
i=1

an,i

)
(T ′ − u′n) . (20)

A. Problem Formulation

To optimize the visiting path a and the data collection
strategy, i.e., thd and tfd, we formulated the AoI-aware UAV
visiting planning problem as follows:

P0 : min
I,a,thd,tfd

αAs + γPs
βDs

(21)

s.t.C1 :



I :
∑N
n=1 an,i = 1, ∀i ∈ {1, ..., I}

II :
∑I
i=1 an,i ≤ 1, ∀n ∈ {1, ..., N}

III :
∑I+1
i=1 an,i = 1, n = N + 1

IV :
∑N+1
n=1 an,i = 1, i = I + 1

V : aN+1,I+1 = 1,

C2 :

{
I : thdi ≥ 0, ∀i ∈ {1, ..., I}
II : 0 ≤ vfdtfdi ≤ lmaxi , ∀i ∈ {1, ..., I}

C3 :lmaxi = min {dmaxcom , di} , ∀i ∈ {1, ..., I}

C4 :Di ≤
N∑
n=1

an,i[t
hd
i R

hd
n +

∫ tfd
i

0

Rfdn,u(t)dt],

∀i ∈ {1, ..., I}
C5 :0 ≤ Es ≤ EU

I ∈ {0, ..., N}, ∀an,i ∈ {0, 1},
∀n ∈ {1, ..., N + 1}, ∀i ∈ {1, ..., I + 1}

where α, β, γ represent weighting factors, and dmaxcom is the
horizontal distance of the maximum communication distance
between the UAV and SNs. The visiting path constraint C1
guarantees that an SN can only be visited once during each
flight. The constraints C2 and C3 limit the data collection dis-
tance between the UAV and SNs. The constraint C4 indicates
the UAV will collect all data generated by SNs. The energy
consumption of UAV is regulated by the constraint C5. We
find out the problem P0 is an MINLP problem due to the
quadratic term constraints and mixed optimization variables.

In order to reduce the difficulty, we utilize the RLT [16]
to tackle the second-order term an,ian′,i+1. We introduce
an auxiliary variable b = [bnn′i](N+1)×(N+1)×I , which is
constrained by

C6 :


I : bnn′i ≤ an,i,
II : bnn′i ≤ an′,i+1,
III : bnn′i ≥ an,i + an′,i+1 − 1.
∀bnn′i ∈ {0, 1}
∀n, n′ ∈ {1, ..., N + 1},∀i ∈ {1, ..., I}

(22)

Besides, we introduce two 0-1 variables x, y and a large
numberM to linearize the min function in the constraints C3.

Algorithm 1: ADMM-Based Visiting Planning

Input: a(0), b(0), thd(0), tfd(0)(not necessarily feasible for
P1), λ(0) = ρ = 1; Set k = 0, f∗ =∞.

1 for I = 1 : N do
2 while k ≤ T and stopping criterion is not met do
3 Solve the SP1 and obtain a(k+1), b(k+1);
4 Solve the SP2 and obtain thd(k+1)

,tfd(k+1)
;

5 Update the Lagrange dual multipliers λ(k+1);
6 k = k + 1;
7 end
8 f(I) = L1(I, a(k), b(k), thd(k), tfd(k));
9 if f(I) ≤ f∗ then

10 f∗ = f(I), I∗ = I , a∗ = a(k), b∗ = b(k),
thd∗ = thd(k), tfd∗ = tfd(k);

11 end
12 end

Output: I∗, a∗, b∗, thd∗, tfd∗.

In this way, the constraints C3 and C5 can be reformulated as

C3′ :



I : lmaxi ≤ di,
II : lmaxi ≤ dmaxcom ,
III : di ≤ lmaxi −M (1− x) ,
IV : dmaxcom ≤ lmaxi −M (1− y) ,
V : x+ y ≥ 1,
∀x, y ∈ {0, 1} , ∀i ∈ {1, ..., I}

(23)

C5′ :0 ≤ E′s ≤ EU , (24)

where the objective function in P0 and Es are replaced by
(25) and (26), respectively. So far, the original problem P0
can be reformulated as

P1 : min
I,a,b,thd,tfd

L1 (27)

s.t. C1,C2,C3′,C4,C5′,C6

I ∈ {0, ..., N}, ∀an,i ∈ {0, 1}, ∀bnn′i ∈ {0, 1}
∀n, n′ ∈ {1, ..., N + 1}, ∀i ∈ {1, ..., I + 1}

B. ADMM-Based Solution

Furthermore, we relax C5′ as

C5′′ :

{
I : E′s + u = EU

II : u ≥ 0
, (28)

and then construct a Lagrangian multiplier formula to P1. Let
λ be the Lagrange multiplier and ρ be the penalty factor. The
augmented Lagrangian for P1 is derived as

Lρ =L1 + λ
(
E′s + u− EU

)
+
ρ

2

∥∥max (E′s − EU , 0)∥∥2 . (29)

Currently, we observe that the variables a, b, thd, tfd could
be separable in P1. Therefore, we apply the ADMM technique
[17], which is a simple yet well-designed method suited for
distributed convex optimization problems, to separate P1 into
two subproblems, where SP1 is a 0-1 integer problem to
optimize the visiting path of the UAV and SP2 is a non-convex
optimization problem with non-linear constraints, focused on



L1 =

I∑
i=1

N∑
n=1

an,iΛn,i +

I∑
i=1

N∑
n=1

N∑
n′=1

bnn′iΥnn′i +

I∑
i=1

(
Ξit

hd
i + Ψit

fd
i

)
+

N∑
n=1

Θn. (25)

E′s =

I∑
i=1

N∑
n=1

an,iϑn +

I∑
i=1

N∑
n=1

N∑
n′=1

bnn′iξnn′ +

N∑
n=1

an,1ζn +

I∑
i=1

(
ψ1t

hd
i + ψ2t

fd
i

)
. (26)

TABLE I
LIST OF KEY SIMULATION PARAMETERS

Parameter Value
H , vmax 10m, 19m/s
P0,P1 [15] 84.12W,84.36W
P chg , Pupn , P srn 10W, 1mW, 22.5µW
B, β0, σ2 [12] 20KHz, −10dB, −90dBm
Di, rsrn 2MB, N(µ = 10, σ2 = 2)KB/s
α, β, γ 0.5, 0.3, 0.2{
εa, εb

}
,
{
εt1, ε

t
2, ε

λ
}

10−3, 10−5

determining the data collection strategy. In the k-th iteration,
SP1 and SP2 are presented as

SP1 : min
a,b

Lρ

(
a,b, thd

(k)
, tfd

(k)
, λ(k)

)
s.t. C1,C6 ∀an,i ∈ {0, 1}, ∀bnn′i ∈ {0, 1}

(30)

SP2 : min
thd,tfd

Lρ

(
a(k+1),b(k+1), thd, tfd, λ(k)

)
s.t. C2,C3′,C4

(31)

The full description of the proposed ADMM-based algo-
rithm is presented in Algorithm 1. The Lagrange multiplier λ
is updated by{

Eλ = E′s(a(k+1),b(k+1), thd
(k+1)

, tfd
(k+1)

)

λ(k+1) = λ(k) + ρ
(
max

(
Eλ − EU , 0

)) , (32)

and the stopping criterion is defined as∥∥a(k) − a(k−1)
∥∥
2
≤ εa,

∥∥b(k) − b(k−1)
∥∥
2
≤ εb,∥∥∥thd(k) − thd

(k−1)
∥∥∥
2
≤ εt1,

∥∥∥tfd(k) − tfd
(k−1)

∥∥∥
2
≤ εt2,∥∥λ(k) − λ(k−1)∥∥

2
≤ ελ.

(33)
By alternately solving these two subproblems, we can even-
tually obtain the optimal solution of the problem P1. This
alternating process allows us to leverage the advantages of the
ADMM and finally converge to the optimal visiting path and
data collection strategy.

IV. SIMULATION RESULTS

Simulation results are provided to verify the performance
of the proposed UAV-assisted visiting planning. We consider
that multiple SNs are randomly distributed in the WPSN to
perform uninterrupted data sensing. Several key parameters are
listed in Table I. Specifically, we model the UAV according
to DJI Air 2s with 41.4Wh battery capacity and maximum
flying velocity vmax = 19m/s. The maximum communication
distance between UAV and SNs is set as 100m, therefore we
have dmaxcom =

√
1002 −H2m, where H = 10m is the flight al-
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Fig. 4. Performance versus the rounds of flights
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Fig. 5. Performance versus different flying velocity vfd (Proposed-mixed)

titude of UAV. We compare five approaches: 1) Greedy-mixed,
in which the UAV selects the nearest SN to visit each time;
2) DP-mixed, dynamic programming-based approach proposed
in [12]; 3) GA-mixed, genetic algorithm-based approach pro-
posed in [13]; 4) Proposed-hover and 5) Proposed-mixed, the
proposed approach. Specifically, both the DP-mixed and GA-
mixed approaches do not consider the energy consumption of
the UAV. The ”hover” and ”mixed” indicate the corresponding
approach applies pure data collection strategy with hovering
mode and the mixed data collection strategy, respectively.

As shown in Fig. 4, we find out that the experimental results
tend to stabilize after the UAV completes 7 rounds of flights.
Therefore, in the rest of the experiments, we evaluate 7 rounds
of flights in each experiment. Besides, we conduct repeated
experiments under Proposed-mixed to determine the best value
of the velocity vfd in flying mode. As shown in Fig. 5, we
observe that the scenario with maximum flying, i.e., vfd =
19m/s, can achieve the best performance.

In addition, we discussed the performance versus the num-
ber of SNs in Fig. 6. In general, the objective function,
the number visited of SNs each flight and energy efficiency
increase as the number of SNs grows. The Proposed-mixed
outperforms other approaches in terms of objective function
and energy efficiency. The Proposed-mixed is better than
Proposed-hover in all aspects, which confirms the outstanding
of the mixed data collection strategy. Specifically, GA-mixed
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Fig. 6. Performance versus # of SNs N

can achieve a smaller average AoI of each SN than Proposed-
mixed, as shown in Fig. 3. This is because the fewest SNs
are visited in GA-mixed during each flight. According to our
definition of AoI in Fig. 3, more visited SNs will cause rapid
growth of AoI increment, that is, more visited SNs will lead
to higher average AoI.

V. CONCLUSIONS

In this paper, we study the energy-limited UAV visiting
planning problem to assist in data collection of the AoI-aware
WPSN. We proposed an ADMM-based visiting planning algo-
rithm to jointly optimize the visiting path and the mixed data
collection strategy. The results show the proposed algorithm
can outperform other approaches in terms of system objective
and energy efficiency.
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